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is nearly constant. The decay of peak tangential velocities
given in Eq. (4) is substantiated by empirical results.
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A Closed-Form Solution to Oblique
Shock-Wave Properties

VincenT R. Mascrrrr*
NASA Langley Research Center, Hampton, Va.

HIS Note is concerned with the direct computation of
oblique shock-wave properties with freestream Mach num-
ber and flow-deflection angle as the independent variables.
The equations governing oblique shock relations may be
written in the form
sin®@ + b sin?0 + csin? 4-d = 0
where

_ M2+ 2 -
b = —[—M ] v sin%

¢ = 2Me2 + O)/MA 4+ [(v + D4 + (v — 1)/M;2] sin%

d = — cos?/M*
and
# = shock-wave angle
M, = freestream Mach number
& = deflection angle
v = ratio of specific heats

which is cubie in sin?6, having three real roots, the smallest of
which results in a decrease in entropy.

Contrary to the statement of Ref. 1, that no convenient
explicit relation exists for this case, there is indeed a general
solution for a cubic. The mathematical derivation can be
found in Ref. 2. From Ref. 2, the solution for a cubic having
three real roots is

sin?f = —b/3 + 2 (b2 — 3¢)V2 cos[(¢ + nw)/3]
where
cosp = (Jbc — b® — FHd)/(b? — 3c)¥/?

and n = 0 corresponds to the strong shock solution; n = 2
results in a decrease in entropy; and n = 4 corresponds to
the weak shock solution. Although many readers may be
aware of this solution, the wide use of iteration schemes to
solve this problem has prompted the author to set down the
explicit solution in general terms.

References

1 Ames Research Staff, “Equation, Tables, and Charts for
Compressible Flow,” Rept. 1135, 1953, NACA.

Received July 29, 1968.
* Aerospace Engineer, Advanced Configuration Group.

VOL. 6, NO. 1

2 Sokolnikoff, I. 8. and Sokolnikoff, E. S., Higher Mathematics
for Engineers and Physicists, 2nd ed., McGraw-Hill, New York
and London, 1941, pp. 86-91.

Free Vibration of Simply Supported

Parallelogrammic Plates

SoMAYAIULU DUuRvasuLa®
Indian Institute of Science, Bangalore, India

Nomenclature

dimensions of the plate, see Fig. 1a

plate rigidity, Eh%/12(1 — »?)

Young’s modulus of the material of the plate

plate thickness

frequency parameter, (ph/D)?wa?/x?

frequency parameter of membrane, (u/S) %00 /%

number of half sine waves in the two directions z; and
Y1, respectively

uniform tension per unit length of stretched membrane

rectangular coordinate system defined in Fig. 1a

oblique coordinates defined in Fig. 1a

mass density of the plate material

angle of skew, defined in Fig. 1a

frequency of oscillation in rad/sec

mass per unit area of membrane

Poisson’s ratio
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Introduction

N this Note, the results of numerical calculations for the
first few frequencies of simply supported parallelogrammic
plates, using the Rayleigh-Ritz method employing double
Fourier sine series in oblique coordinates, are presented.
Interesting features, hitherto unreported in the literature, such
as 1) the skew angle splitting the degenerate frequencies of
rectangular plates to distinet ones and 2) the “frequency
crossing’’ of the modes of simply supported skew plates, are
discussed. In fact, it has been shown in Ref. 1 that these fea-
tures are also exhibited by clamped skew plates.

The literature does not contain adequate results for the
frequencies of simply supported parallelogrammic plates.
Conway and Farnham? calculated only the fundamental fre-
quency for a few configurations of the plate by point match-
ing, using & mathematical relationship that exists between the
problems of a simply supported polygonal plate and a poly-
gonal membrane of the same geometry.*=® This relationship
shows that the eigenvalues of the plate are squares of the
eigenvalues of the membrane, whereas the eigenfunctions are
identical. Weinstein® reports the upper and lower bounds of
the frequencies of modes symmetric about both the diagonals
of rhombic membrane, which have been calculated by Stadter”
in an unpublished report. These values serve admirably for
comparison with the results of simply supported rhombic
plates on the basis of the aforementioned relationship.

Details of Solution

The vibration problem becomes a particular case of panel-
flutter problem of simply supported parallelogrammic panels,
which is discussed in detail in Ref. 8. Consequently, the
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